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In this study, we examined various forms of mathematical models that are relevant

for the containment, risk analysis, and features of COVID-19. Greater emphasis was

laid on the extension of the Susceptible–Infectious–Recovered (SIR) models for pol-

icy relevance in the time of COVID-19. These mathematical models play a significant

role in the understanding of COVID-19 transmission mechanisms, structures, and

features. Considering that the disease has spread sporadically around the world,

causing large scale socioeconomic disruption unwitnessed in contemporary ages

since World War II, researchers, stakeholders, government, and the society at large

are actively engaged in finding ways to reduce the rate of infection until a cure or

vaccination procedure is established. We advanced argument for the various forms

of the mathematical model of epidemics and highlighted their relevance in the con-

tainment of COVID-19 at the present time. Mathematical models address the need

for understanding the transmission dynamics and other significant factors of the dis-

ease that would aid policymakers to make accurate decisions and reduce the rate of

transmission of the disease.

1 | INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a

novel β-coronavirus is the pathogen responsible for the coronavirus

disease 2019 (COVID-19; Li, Geng, Peng, Meng, & Lu, 2020). The

novel coronavirus has spread across the globe with the attendant

consequences felt in about 203 countries. As at the time of writing

(June 18, 2020), there are about 8,061,550 confirmed COVID-19

cases with 440,290 attributable deaths (World Health Organization

[WHO], 2020). The Americas (North and South) account for close to

50% of global cases with values standing at 3,899,859 confirmed

cases and 205,555 deaths. In Europe, there are about 2,452,247 con-

firmed cases with about 189,582 attributable deaths. In the Eastern

Mediterranean region, cases have soared to 817,458 with fatalities

around 18,057. In the Southeastern Asia region, about 503,034 cases

have been recorded with around 15,498 deaths. Down in the west-

ern pacific, there are about 200,586 cases with about 7,239 attribut-

able deaths. Across the African region, the number of confirmed

cases stood at 187,625 with 4,346 deaths (WHO, 2020). Since the

emergence of the virus in Wuhan, China in December 2019, the

aerosolized pathogens have spread exponentially, causing a large

scale and unprecedented socio and economic disruptions, threat to

global public health systems, poverty, undesirable psychological

depression, more considerable uncertainties among many other

deep-rooted issues (Sameni, 2020). The viral genome sequence of

the SARS-CoV-2 suggests the close relatedness to SARS-like bat

CoVs, but most genomic encoded proteins of the SARS-CoV-2 are

similar to the SARS-Covs with differences in two of the non-

structural proteins (NSP2 and NSP3), spike protein and the receptor-

binding domain (RBD; Wu et al., 2020). Studies have shown that the

SARS-CoV-2 is capable of mutation with two types being majorly

classified as the L-type and the S-type (Tang et al., 2020). The S-type

has been reported to have evolved when jumping from animal to

man while the L-type evolved later. Although both are currently

involved in the pandemic, the L-type has been reported to be more

prevalent than the S-type (Guo et al., 2020). How mathematical

models explain these chain reactions and transmission mechanisms

forms the core of the foregoing.
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Severity, features, structures risk analysis, and containment of the

virus have been studied along with various disciplines and dimensions

(Adekunle, Onanuga, Akinola & Ogunbanjo, 2020). A notable consen-

sus has been the adoption of social distancing and practice of good

hygiene as a measure to deter virus proliferation and flatten the epi-

demic growth curve such that fast-rising number of COVID-19 attrib-

utable deaths can be reduced (Sameni, 2020). However, empirical

ambiguity still persists on the mechanical (mathematical) nature of the

transmission pattern. Mathematical models are well-positioned to

explain the evolutionary nature of epidemic outbreaks and the spread

pattern. A review of the mathematical models with attendant struc-

tural evolution for the transmission dynamics of COVID-19 could be

an essential finding in the containment, risk analysis, and search for

the cure of the disease.

With the global pandemic leading to the increase in morbidity and

mortality of the global population, socioeconomic, and public health

disarray (Van Zandvoort et al., 2020), the agonizing consequences of

the novel coronavirus on public health are influencing new waves of

research on the relevance of mathematical models in predicting the

sequence of the virus and its propagation pattern. With the proper

understanding of the evolutionary and dynamic growth pattern of

COVID-19 using mathematical models, public health officials, govern-

ment and the society at large can take a giant step forward in their

fight against COVID-19 amidst global uncertainties (Nandal, 2020).

Several researchers in the scientific community have carried out inter-

disciplinary studies to understand the virus propagation pattern using

various mathematical models (see Ivorra, Ferrández, Vela-Pérez, &

Ramos, 2020; Kim, Seo, & Jung, 2020; Ndaïrou, Area, Nieto, &

Torres, 2020; Torrealba-Rodriguez, Conde-Gutiérrez, & Hernández-

Javier, 2020 for some examples). However, a holistic approach of

mathematical instrumentalization models in the analysis of COVID-19

growth curve and its containment strategies remains grossly under-

studied in extant literature. The intricacies of this unobserved factor

underpin this study. We complement available studies on the subject

matter and extend the SIR models and rely on inferences drawn from

available studies using the extensions of SIR models. The application

of these models consists of the use of mathematical tools and a spe-

cific language to explain and predict the behavior of the infectious

viral disease. These models could be deterministic, non-deterministic,

or could contain branching processes that aid the prediction of the

infectious disease.

2 | MATHEMATICAL MODELS

Mathematical models help to make mental models quantitative; it

involves writing down a set of equations that mimics reality which

is then solved for specific values of the parameters within the equa-

tions (Panovska-Griffiths, 2020; Revathi & Rangnathan, 2020).

Mathematical modeling simplifies reality and answers questions

using subsets of data (Panovska-Griffiths, 2020). Predictive mathe-

matical models are essential for understanding the course of an epi-

demic. One of the most commonly used models is the Susceptible–

Infectious–Recovered (SIR) models for the human to human trans-

mission (Giordano et al., 2020). However, modelers need to acquire

at least one dataset with relevant data points before developing or

validating a model (Nandal, 2020). Predictive models for large coun-

tries could be problematic because they aggregate heterogeneous

sub-epidemics (Jewell, Lewnard, & Jewell, 2020). Various factors,

such as individual characteristics and population distribution, have a

significant contribution, thus affecting the model prediction (Jewell

et al., 2020).

2.1 | Models for airborne viral diseases

2.1.1 | Susceptible–infectious–recovered

The underlying mathematical model which has been developed as far

back in the 1920s is still in use today, and this basic model is referred

to as the SIR model (Freiberger, 2014). The SIR model divided the

population into three groups as in Shil (2016); the susceptible (S), the

infectious (I), and the recovered (R). It was developed by Kernack and

McKendrick to describe an influenza epidemic (Bauer, 2017). It

assumes the introduction of an infected individual into a population

where the members have not been previously exposed to the patho-

gen. Therefore, all are susceptible (S), each infected individual

(I) transmits to susceptible members of the population with a mean

transmission rate β. At the end of the infectious period, individuals

who recover from the infections are referred to as the recovered

(R) member of the population, if the mean recovery rate is α, then the

mean transmission period in any individual is given by 1/α. The differ-

ential equations describing the transmission as per the basic SIR

model is given by

dS tð Þ
dt

= βS tð ÞI tð Þ ð1Þ

dI tð Þ
dt

= βS tð ÞI tð Þ−αI tð Þ ð2Þ

dR tð Þ
dt

= αI tð Þ ð3Þ

where S(t) and I(t) represents the number of individuals in the suscep-

tible and infectious states respectively at any time t, while the rates of

change of S(t) and I(t) with time is represented by dS(t) and dI(t),

respectively.

If the population is considered constant with no agent leaving or

coming into the system, the equation is given by:

N= S tð Þ+ I tð Þ+R tð Þ ð4Þ

The number of susceptible individuals decreases as the number of

incidences increases, so also the epidemic declines, as more individ-

uals recover from the disease (Shil, 2016). Basic reproduction number

is a phenomenon where the average number of secondary infections
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generated by one infectious individual when introduced into a fully

susceptible population is measured, R0 denotes it. The severity of an

epidemic and rate of progression depends on the value of the basic

reproduction number, so if R0 is greater than 1, the epidemic will con-

tinue, but if it is less than 1 then the epidemic would fade out

(Delamater, Street, Leslie, Yang, & Jacobsen, 2019). The basic repro-

duction number can be calculated from the growth rate (r) of the epi-

demic obtained from the cumulative incidences data in the initial

growth phase of the outbreak as

R0 = 1+
r
/

� �
ð5Þ

The numerical solutions of the ordinary differential equations can

be obtained with an appropriate application using computer simula-

tions, and this model has been used to explain the transmission and

repeated outbreaks of measles in New York between 1930 and 1962.

The SIR model can be further modified considering demographics and

weather/seasonal variations. Modified SIR has been used to explain

viral epidemics such as Influenza justifying its applicability to the

COVID-19 context.

2.1.2 | Susceptible–exposed–infectious–recovered

Certain infectious diseases have an incubation period or exposed

state in an individual following infection until the symptoms are

observed. In other words, the susceptible–exposed–infectious–

recovered (SEIR) account for the exposed or latent stage (Shil, 2016).

Here each individual who receives the virus exists in the exposed or

latent state (E) during which the virus is incubated but does not trans-

mit the infection to anyone, so with the onset of symptoms the indi-

vidual makes a transition to the infectious state. Considering the

constant population size

N= S+ E + I+R ð6Þ

and the set of differential equations as;

Recall Equation (1) dS tð Þ
dt = βS tð ÞI tð Þ and Equation (2)

dI tð Þ
dt = βS tð ÞI tð Þ−αI tð Þ to generate

dE tð Þ
dt

= βS tð ÞI tð Þ−kE tð Þ ð7Þ

While Equation (3) remains as dR tð Þ
dt = αI tð Þ.

The basic reproduction of the SEIR model can be determined

using the formula

R0 = 1+
r
/

� �
1+

r
k

� �
ð8Þ

where the mean infective period is 1/α while the mean incubation

period is 1/k.

The SEIR model with suitable adaptations has been widely applied

for various disease epidemics such as chickenpox and SARS, and its

relevance has been advanced for the analysis of the dynamic trans-

mission of COVID-19 in this context.

2.1.3 | Susceptible–exposed–infectious–
asymptomatic–recovered

This is a simple model for viral epidemics involving asymptomatic indi-

viduals in the population in a situation without any interventions. Indi-

viduals testing positive in serological tests or blood tests for disease

without symptoms is referred to as asymptomatic and is denoted as A

in the susceptible–exposed–infectious–asymptomatic–recovered

(SEIAR) model, so considering a constant population;

N= S tð Þ+ E tð Þ+ I tð Þ+A tð Þ+R tð Þ ð9Þ

This indicates the total population was susceptible, and there

was no transmission from individuals at the latent state and a frac-

tion of the proceeds to the infectious state. In contrast, other frac-

tions (I − p) proceed to the asymptomatic state at the same time

(k) with the asymptomatic individuals having a reduced ability to

transmit the infection. If q is the factor that determines transmissi-

bility in asymptomatic individuals, then 0 < q < 1. The ordinary dif-

ferential equation of the transmission process can be described as

the following.

dS
dt

= −βS 1+ qAð Þ ð10Þ

dE
dt

= βS 1+ qAð Þ−kE ð11Þ

dI
dt

= pkE−αI ð12Þ

dA
dt

= 1−pð ÞkE−ȠA ð13Þ

dR
dt

= αI+ȠA ð14Þ

dC
dt

= αI ð15Þ

where C denotes the cumulative number of infectives. This model was

used to explain the transmission dynamics of the swine flu outbreak

in 2009 at a residential school in Maharashtra, India (Shil, 2016).

2.1.4 | Complex SEIAR (hospitalization)

This model describes the incorporation of the hospitalization of a frac-

tion of infectious individuals. Here the population is classified into
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SEIAR with J(t) and D(t) denoting the hospitalized and dead respec-

tively. Considering the total population is constant at any time,

N= S tð Þ+ E tð Þ+ I tð Þ+A tð Þ+ J tð Þ+D tð Þ ð16Þ

The ordinary differential equation of the transmission process is

described as the following

dS
dt

= μN tð Þ− βS tð Þ:I tð Þ+ J tð Þ+ qA tð Þ
N

−μS tð Þ ð17Þ

dE
dt

=
βS tð Þ: I tð Þ+ J tð Þ+ qA tð Þð Þ

N
− k + μð ÞE tð Þ ð18Þ

dA
dt

= k 1−pð ÞE tð Þ− y1+ μð ÞA tð Þ ð19Þ

dI
dt

= kpE tð Þ− α+ y1+ μð ÞI tð Þ ð20Þ

dJ tð Þ
dt

= αI tð Þ− δ+ y2+ μð Þ J tð Þ ð21Þ

dR tð Þ
dt

= y1 A tð Þ+ I tð Þð Þ+ y2 J tð Þ−μR tð Þ ð22Þ

dD tð Þ
dt

= δJ tð Þ ð23Þ

dC tð Þ
dt

= αI tð Þ ð24Þ

The μ represents the rate of birth and natural death, while the

cumulative number of infections is represented by C(t). Epidemic

data of the Spanish Flu pandemic in Geneva was obtained using the

Complex SEIAR model, and all parameters of the model were

determined.

The SEIR and SEIAR models have been further extended by

involving various parameters to play crucial roles in public health

interventions, quarantine, travel restrictions, vaccination, or dosage of

antivirals (Shil, 2016).

3 | MODELLING THE COVID-19
PANDEMIC

Globally, radical alteration with rapidly changing socioeconomic

dynamics has been occurring due to the COVID-19 Pandemic. Several

countries have been on full or partial lockdown while adhering to

social distancing measures as they wait for a specific treatment

modality such as vaccines (Sinha, 2020). Public information such as

incidence or prevalence of infection, morbidity, or mortality due to

COVID-19 could be used to solve mathematical models, solutions

from these models are then recalibrated repetitively until it is suitable

for prediction of the future behavior of SARS-CoV-2 (Panovska-

Griffiths, 2020).

The COVID-19 Pandemic has been modeled by various

researchers with the aim of stimulating the infections within the pop-

ulation (Shaikh, Shaikh, & Nisar, 2020). Most models represent indi-

vidual to transition between compartments in a given community,

these compartments are based on each individual's infectious state,

and related population sizes with respect to time (Shaikh et al., 2020).

Lin et al. (2020) had suggested a conceptual model for COVID-19, this

model effectively catches the timeline of the disease epidemic while

Chen et al. (2020) examined a model based on stage based transmissi-

bility of the SARS-CoV-2 (Chen et al., 2020; Lin et al., 2020). Whereas

Khan and Atangana (2020) formulated a model of people versus

COVID 19, the model is given as

DtS tð Þ=Δ−λS−
aS I+ βAð Þ

N
−γSQ, ð25Þ

DtE tð Þ= / S I+ βAð Þ
N

+ γSQ− 1−ϕð ÞδE−ϕμE−λE, ð26Þ

DtI tð Þ= 1−ϕð ÞδE− σ + λð ÞI, ð27Þ

DtA tð Þ=ϕμE− ρ+ λð ÞA, ð28Þ

DtR tð Þ= σI+ ρA−λR, ð29Þ

DtQ tð Þ= κI + υA−ηQ, ð30Þ

where N represents the total population and is further divided into

five subclasses which include susceptible people S(t), exposed people

E(t), infected people I(t), asymptomatic people A(t), and recovered peo-

ple R(t). The reservoir population is denoted as Q(t).

Since most mathematical models utilize ordinary differential equa-

tions with integer order for understanding dynamics of biological sys-

tems, every model depending on such classical derivatives has been

discovered to have restrictions (Shaikh et al., 2020). These restrictions

could be overcome using fractional calculus, as recommended by

Caputo and Fabrizio. Researchers such as Shaikh et al. (2020) applied

the Caputo-Fabrizio fractional derivative operator to study the

dynamics of COVID-19 using the mathematical model suggested by

Khan and Atangana (2020) in the form of the system of nonlinear dif-

ferential equations involving the Caputo–Fabrizio operator (Khan &

Atangana, 2020; Shaikh et al., 2020). The model is given as

CFDτ
t S tð Þ=Δ−λS−

aS I+ βAð Þ
N

−γSQ, ð31Þ

CFDτ
tE tð Þ= / S I+ βAð Þ

N
+ γSQ− 1−ϕð ÞδE−ϕμE−λE, ð32Þ

CFDτ
t I tð Þ= 1−ϕð ÞδE− σ + λð ÞI, ð33Þ

CFDτ
tA tð Þ=ϕμE− ρ+ λð ÞA, ð34Þ

CFDτ
tR tð Þ= σI+ ρA−λR, ð35Þ
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CFDτ
tQ tð Þ= κI + υA−ηQ, ð36Þ

With initial conditions

S 0ð Þ= θ1,E 0ð Þ= θ2, I 0ð Þ= θ3,A 0ð Þ= θ4,R 0ð Þ= θ5,Q 0ð Þ= θ6:

Early dynamics of COVID-19 transmission were studied by

researchers such as Kucharski et al. (2020), where a combination of a

stochastic transmission model with data on both cases in Wuhan and

international cases that originated from Wuhan were used to estimate

how transmission had varied between January to February 2020,

these estimates were then used to calculate the probability of new

cases that might generate outbreaks in new areas (Kucharski

et al., 2020). Their findings estimated that daily reproduction number

(Rt) in Wuhan declined from 2.35 to 1.05 between 1 week before and

after travel restrictions were introduced respectively (Kucharski

et al., 2020). based on these estimates, locations with similar transmis-

sion potential to Wuhan have at least a 50% chance of an outbreak

for very four independently introduced cases (Kucharski et al., 2020).

Several modeling studies have used the SEIR model to study the

transmission dynamics of COVID-19. Wu, Leung, and Leung (2020)

used the SEIR model to describe the transmission dynamics and fore-

cast the spread of the disease using reported data between December

31, 2019, to January 28, 2020. The study also estimated the basic

reproductive number to be 2.68 (Wu, Leung, & Leung, 2020). Another

study by Read, Bridgen, Cummings, Ho, and Jewell (2020) using the

SEIR model reported a basic reproductive number value of 3.1 using

an assumption of Poisson-distributed daily time increments (Read

et al., 2020). In contrast, Tang et al. (2020) obtained a basic reproduc-

tive number value as high as 6.47 when the clinical progression of the

disease, individual epidemiological status, and intervention measures

were incorporated into a deterministic compartmental model based

on the SEIR model (Tang, Wu, et al., 2020). A different approach was

used by Van Zandvoort et al. (2020). An age-stratified SEIR model

was used to study the effectiveness of non-pharmaceutical interven-

tions in three African countries (Van Zandvoort et al., 2020). Most

African countries have resource-limited settings and have fewer

means to suppress virus propagation, and the study observed that iso-

lating infected individuals is the most effective way of reducing trans-

mission in African countries (Van Zandvoort et al., 2020). All these

studies are based on the human-to-human transmission and did not

take in to account the significance of the environment in COVID-19

transmission (Yang & Wang, 2020). Yang and Wang examined pro-

posed an SEIR model that describes multiple transmission pathways in

the infection dynamics. It also emphasized the role of the environ-

mental reservoir in the propagation of COVID-19 (Yang &

Wang, 2020). The model employed non-constant transmission rates

that change with the epidemiological status and environmental condi-

tions while reflecting the impact of the on-going control measures.

Using public data, the study concluded that COVID-19 would remain

endemic, and this demands long term prevention and intervention

measures (Yang & Wang, 2020).

A different mathematical model approach was employed by Li

et al. (2020) where a susceptible–exposed–infectious–quarantined–

diagnosed–recovered (SEIQDR) based model, which is an expansion

of the SEIR model was used (Li, Wang, et al., 2020). This six-

chambered model was used to study the transmission mechanism of

COVID-19 and the implemented prevention and control measures,

with the aid of time series and kinetic modal analysis, a basic repro-

ductive number value of 4.01 was obtained (Li, Geng, et al., 2020).

The findings of the study suggested that while recovered individuals

might not be re-infected due to the presence of antibodies to COVID-

19, bodies of deceased individuals should be well treated to prevent

viral transmission (Li, Wang, et al., 2020). Kim et al. (2020) also used a

SEIQR model that factored in behavioral changes to study the trans-

mission of COVID-19 in Korea and predict the likely size and end of

the epidemic (Kim et al., 2020). The model predicted over 10,000

cases over time until June, so it was suggested that a sustainable long

term non-pharmaceutical interventions would significantly reduce

transmission among the population (Kim et al., 2020).

Although the mathematical models for the COVID-19 have

majorly forecast few areas relating to pathogen spread such as the

basic reproductive number of the SARS-CoV-2, population control

measures, percentage of asymptomatic people (Nandal, 2020). There

is still a paucity of modeling studies focusing on predicting the mag-

nitude of the global spread of the virus, the duration of the pan-

demic, and possible effective interventions (Nandal, 2020).

Nevertheless, consumers of these models such as the public, media,

and politicians; have the need for these predictions to plan for vari-

ous interventions that would be reliable in combating the disease

(Jewell et al., 2020).

Models are very useful tools particularly for short term accurate

predictions, and it helps policymakers to make decisions and allocate

adequate resources toward disease control through predictions of dis-

ease spread and infected population (Kucharski et al., 2020; Revathi &

Rangnathan, 2020). Mathematical models can be used to understand

how and where the disease is most likely to spread while avoiding so

many trial experiments or random guesses with the real population.

Most mathematical models used during this epidemic are extensions

of the SEIR model, a compartmental model based on the behavior of

the population which enabled the simulation of how non-

pharmaceutical prevention and intervention measures such as lock-

downs, social distancing, self-isolation; can significantly affect the

morbidity and mortality of the population over time (Sameni, 2020).

4 | CONCLUSION

Although mathematical models mimic the actual reality using an

equation that is solved for specific values of the user parameters

within the equations, a mathematical model is as good as the data it

uses. However, mathematical models are potent tools for under-

standing the transmission dynamics of an infectious viral disease. In

other climes, there is no gainsaying to aver that the SEIR model
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seems the most reliable extension of the SIR models during this

pandemic due to its plausibility in explaining heterogeneous changes

in features, structures, containment and risk analysis of the virus

transmission. Since infectious diseases have an incubation period or

exposed state in an individual following infection until the symp-

toms are observed, the SEIR account for the exposed or latent stage

which is concomitant with real-time observation across various

geography and population. During the COVID-19 Pandemic, mathe-

matical models have played significant roles in policymaking and

social life generally. Through various models, different scenarios

have been explored to understand the transmission of COVID-19,

basic reproductive number, case-fatality rate, duration of epidemic,

and significance of various prevention and intervention measures

among the population. Although mathematical models rely on pre-

dictions and estimations, they are handy tools that could signifi-

cantly guide the implementation of public health decisions when

properly expressed and estimated.
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